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Constraints from primordial black hole formation at the end of inflation
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Primordial black hole (PBH) abundance limits constrain the primordial power spectrum, and
hence models of inflation, on scales far smaller than those probed by cosmological observations.
Single field inflation models which are compatible with all cosmological data can have large enough
perturbations on small scales to overproduce PBHs, and hence be excluded. The standard formulae
for the amplitude of perturbations do not hold for modes that exit the horizon close to the end of
inflation however. We use a modified flow analysis to identify models of inflation where the amplitude
of perturbations on small scales is large. For these models we then carry out a numerical evolution
of the perturbations and use the PBH constraints on the power spectrum to eliminate models which
overproduce PBHs. Significant PBH formation can occur in models in which inflation can continue
indefinitely and is ended via a secondary mechanism. We demonstrate that PBHs constrain these
types of inflation models and show that a numerical evaluation of the power spectrum decreases the

number of otherwise viable models of inflation.

PACS numbers: 98.80.Cq

I. INTRODUCTION

Primordial black holes (PBHs) can form in the early
Universe via the collapse of large density perturba-
tions [1,12]. There are tight constraints on the abundance
of PBHs formed from their present day gravitational ef-
fects and the consequences of their evaporation. These
limits can be used to constrain the power spectrum of
the primordial density, or curvature, perturbations. The
PBH constraints on the curvature power spectrum are
fairly weak, being many orders of magnitude larger than
the measurements on cosmological scales. They do, how-
ever, apply over a very wide range of scales and therefore
provide a useful constraint on models of inflation. Peiris
and Easther [3] have shown that there are single field in-
flation models, which are compatible with all cosmolog-
ical observations, for which the perturbation amplitude
on small scales is large enough to produce a significant
density of PBHs.

For scales which exit the horizon close to the end of in-
flation the standard (Stewart-Lyth [4]) formulae for the
amplitude of perturbations do not hold. Leach and Lid-
dle [5] carried out a numerical calculation of the evolution
of perturbations for a quadratic inflationary potential.
They found that the perturbations on scales which exit
the horizon close to the end of inflation were roughly an
order of magnitude larger than predicted by the Stewart-
Lyth formula (see also Ref. [6]). Therefore to fully exploit
the power of PBH constraints on inflation models, a nu-
merical calculation of the amplitude of perturbations on
small scales is required. It has recently been shown [7, 8]
that PBHs can also form on scales which never leave the
horizon. We do not consider this possibility here.
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In this paper we use a modified flow analysis to identify
inflation models where the perturbations at the end of
inflation may be large enough for primordial black holes
to be overproduced. For these models we carry out a
numerical evolution of the primordial perturbations and
use the PBH constraints on the power spectrum to elim-
inate models which overproduce PBHs. We describe the
modified flow analysis in Sec. [TA] and the evolution of
perturbations and the calculation of the power spectrum
in Sec. [IBl We apply the primordial black hole abun-
dance constraints and present our results in Sec. [[IT] and
conclude with discussion in Sec. [Vl

II. METHOD
A. Flow equations approach

We consider the Hubble slow roll-parameters [9]:
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where mp; is the Planck mass and ’ denotes differentia-
tion with respect to the scalar field, ¢. The flow equa-
tions [10, [11] encode the variation of the slow-roll param-
eters in terms of the number of e-foldings from the end
of inflation, N = In[a(tena)/a(t)] and provide a method
for stochastically generating inflation models:
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where o = 2(*\y) — dey and Ay = ng.

Following Kinney [11] we randomly chose ‘initial’ val-
ues for the slow-roll parameters and N.qs, the number of
e-foldings between cosmological scales exiting the horizon
and the end of inflation, in the ranges:

Ncos = [40,60]a
ex = [0,0.8],
og = [-0.5,0.5],
\g =&y = [-0.05,0.05],
3\ = [—0.005,0.005]
M+1)\H =0, (6)

truncating the hierarchy at M = 6. We then evolve the
flow equations forward in time (AN < 0) from N = N
until either N = 0 or inflation ends with ez = 1. In the
former case we calculate the cosmological observables,
the spectral index, ng, its running, dng/dlnk, and the
scalar to tensor ratio, r, using the initial values of the
slow-roll parameters [11]:

1
ngs—1 = og—(5— 301)6%{ - 1(3 —5C1)oHeEn
1
23— C)én @
dns 1 9
dnk <1 - eH) (26 = 126y = Senon
3-5C 3-C
- o eH§H+%41)aH§H . (8)
r = EH[1—01(0H+26H)], (9)

where C; = 4(In2 + v) — 5 &~ 0.0814514 and ~ =~ 0.577.
In the latter case we evolve the flow equations backward
Nos e-folds and calculate the cosmological observables at
this point. In some cases inflation also ends when evolv-
ing backwards before N, e-folds are achieved. These
models are incapable of supporting the required amount
of inflation and are discarded.

Our algorithm differs from that originally proposed by
Kinney [11] in how we handle models chosen from the ini-
tial hierarchy that are destined to inflate forever, ey — 0,
but do not reach this limit within N e-foldings. In
the original flow algorithm in this case the cosmological
observables are calculated at the late-time fixed point
i.e. the model is forced to evolve to its asymptotic limit.
In this limit the running of the spectral index is negli-
gible. Therefore for models which are compatible with
the WMAP 7 year measurement of the spectral index,
ng = 0.964 £ 0.012 [12], the amplitude of the curvature
perturbations can not be large on any scale and PBHs are
never formed in significant numbers [13]. Following Peiris
and Easther 3], we do not force these models to evolve to
their asymptotic limit but instead terminate them once
Ncos e-folds of inflation have occurred. At this point it is

assumed that another mechanism, for example a second-
field such as in hybrid inflation [14], terminates inflation.
With this treatment some of these models are consistent
with the WMAP measurements of the spectral index and
its running, but have perturbations on small scales which
may be large enough to over-produce PBHs |3, [15-17].

B. Perturbation calculation

The evolution of inflationary curvature perturbations,
R, is carried out using the Mukhanov variable [18], v =
—2zR, where
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The Fourier modes, uy, evolve according to a Klein-
Gordon equation with a time-varying effective mass:
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where 7 is conformal time, dr = dt/a, and
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At early times, 73, when a mode k is well within the
horizon, aH/k — 0, the initial condition for wuy(7;), is
taken to be the Bunch-Davies vacuum state,

1 .
ugp(n) = N exp (—ikn) . (13)

In the superhorizon limit, k? < 2", eq. () has a growing
mode solution ug o z, so that the curvature perturbation
Ry = |uk/z| ‘freezes out’ and becomes constant. The
power-spectrum of the curvature perturbations can thus
be calculated as
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Eq. () can be solved exactly for the special case of
power-law inflation. The commonly used Stewart-Lyth
formula is found via a slow-roll expansion around this
exact solution [4]:
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where C = —2 4+ 1In2 4+ v = —0.729. This expression
gives the power spectrum in the asymptotic superhori-
zon limit, k/aH — 0, in terms of the Hubble parame-
ter and slow-roll parameters evaluated at horizon cross-
ing [19]. It is valid provided that the slow-roll approxima-

tion holds (specifically that the slow-roll parameters are



FIG. 1: The power spectrum of the primordial curvature per-
turbations generated during the final few e-folds for an exam-
ple inflation model. The black solid line shows the Stewart-
Lyth equation while the blue dotted line is the result of a
numerical mode by mode evolution.

slowly varying around horizon crossing) and the asymp-
totic limit is reached before inflation ends m] For modes
which exit the horizon close to the end of inflation the
asymptotic limit will not be reached, and the slow-roll
approximation may also be violated. Leach & Liddle ﬂﬂ]
investigated this for a simple quadratic chaotic inflation
model. They found that for scales that exit the horizon
very close to the end of inflation the power spectrum is
roughly an order of magnitude larger than that found us-
ing the Stewart-Lyth expression. In other words, analytic
calculations can significantly underestimate the ampli-
tude of perturbations and hence the abundance of PBHs
formed. Therefore, a numerical calculation of the pertur-
bation evolution is required to accurately compute the
primordial power spectrum on the very smallest scales.

We use a modified version of the Inflation v2 module
(written by Lesgourgues & Valkenburg) [21] to carry out
an accurate numerical calculation of the evolution of per-
turbations. Fig.[lshows the power spectrum of curvature
perturbations of an example inflation model generated
using the modified horizon flow formalism. The power
spectrum on large scales is compatible with the WMAP
7 year data, while the perturbations on small scales are
sufficiently large that PBHs may be over-produced. The
Stewart-Lyth calculation is in good agreement with the
numerical calculation until the final few e-folds of infla-
tion. On these small scales, the assumptions that are em-
ployed in the Stewart-Lyth calculation break down, and
the numerical calculation finds a significant enhancement
of the amplitude of the perturbations.
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FIG. 2: The cosmological observables, ns, dns/dInk and r, for
models generated using the modified flow algorithm described
in the text. All models which sustain the required number of
e-foldings of inflation are shown in the top two plots and those
remaining once PBH constraints are applied are shown in the
bottom plots.

III. RESULTS

We use the modified flow algorithm described in
sec. [[TAl to generate a large ensemble (250,000) of infla-
tion models. In fig. 2l (top row) we plot the cosmological
observables for all models which are able to sustain the re-
quired number of e-foldings of inflation, N¢us. In around
7% of the models inflation ends naturally via eg = 1 and
these largely populate the concentrated diagonal feature
seen in the left hand plots as well as the r = 0 line (c.f.
Ref. [11]). In the remaining 93% of models, eg — 0 and
it is assumed, c.f. Ref. B], that a secondary mechanism,
such as hybrid inflation, acts to end inflation in these
cases. Large positive running is in principle allowed (see
top right plot), however these models may have large
amplitude perturbations on small scales and hence over-
produce PBHs.

To apply the PBH constraints we use the Stewart-Lyth
expression for the power spectrum, eq. (&), to iden-
tify inflation models where the amplitude of the pertur-
bations on small scales which exit the horizon close to
the end of inflation is large, and may lead to the over-
production of PBHs. For these models, we then carry
out an accurate numerical evolution of the primordial
perturbations, as described in Sec. [TBl

The PBH abundance constraints have recently been
compiled and updated in Refs. [22, [23]. The resulting
constraints on the amplitude of the power spectrum are
typically in the range Pr < 1072 —10~! with some scale



dependence |22]. To be conservative we use the constraint
Pr < 1071, The bottom row of fig. Bl shows the cos-
mological observables for the models which remain once
those which over-produce PBHs are excluded. The 7%
of the original models for which inflation ends naturally
generally have ng < 1 on all scales and so are unaffected
by the PBH constraints. Of the remaining models, in
which inflation continues indefinitely in the absence of a
secondary mechanism, 92% are excluded by PBH over-
production. Of the models initially generated, only ap-
proximately 1% end via a secondary mechanism and do
not overproduce PBHs. With an accurate numerical cal-
culation of the perturbations the number of these models
decreases by approximately 10%. Large positive running
is now excluded as expected (see bottom-right plot).

Cosmological constraints on dng/dlnk eliminate a sig-
nificant fraction of the models generated using flow al-
gorithms [11]. A full MCMC analysis of cosmological
data is beyond the scope of this work, however a simple
application of the observational constraints shows that
a significant fraction of cosmologically viable models are
excluded by PBH constraints. Of the models generated
using our modified flow analysis which have cosmological
observables within the 30 ranges found by WMAP7 [12]
19% are excluded by PBH over-production. This illus-
trates that in the era of precision cosmological measure-
ments PBH still provide a powerful constraint on infla-
tion models.

IV. CONCLUSIONS

We have applied constraints on the primordial power
spectrum from the overproduction of primordial black
holes to inflation models generated by a modified flow

algorithm. The amplitude of inflationary perturbations
is usually calculated using the Stewart-Lyth [4] expres-
sion, however for scales which exit the horizon close to
the end of inflation the assumptions underlying this ex-
pression are violated. A numerical calculation is there-
fore required, and the amplitude of the perturbations on
small scales can be significantly enhanced [, 6]. The
models generated by the modified flow algorithm which
end naturally (roughly 7% of the total) generally have
a red spectrum of perturbations on all scales and so are
unaffected by PBH constraints. The remaining 93% of
models equations have a late time attractor with ez — 0
and it is assumed that an auxiliary mechanism termi-
nates inflation. The majority of these models are how-
ever excluded due to PBH over-production. The number
of viable models decreases if the power spectrum is cal-
culated numerically. Of the models generated using our
modified flow analysis which have cosmological observ-
ables within the 30 ranges found by WMAP7 [12] 19%
are excluded by PBH over-production.

We conclude that PBH constraints provide a signif-
icant constraint on models of inflation. Furthermore to
exploit their full power an accurate numerical calculation
of the amplitude of primordial perturbations on small
scales, which exit the horizon close to the end of infla-
tion, is required.
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